Lower Bounding - Game Theoretic Approach

- Online Algorithms
- Online Paging Problem
- Competitive Analysis
 - Adversary Models
Online Algorithms

- **Online vs. Offline algorithms**
 - Offline algorithms receive all their inputs at one time.
 - Online algorithms receive and process their inputs in partial amounts

- **e.g. Sorting**
 - Quick Sort is an offline sorting algorithm while Insertion Sort is an online sorting algorithm

- **Why?**
Paging Problem

- Consider a 2 level memory hierarchy in a computer system
 - a fast – therefore expensive – therefore small – memory M_0
 - a slow – therefore inexpensive – therefore large – memory M_1

- Assume that each level is divided into units of exchange known as *pages*
 - Let M_0 have k pages and M_1 have at least $k+1$ pages

- When a page is to be used by the processor, it is brought in from M_1 to M_0 if it is not already available
 - If no free slot is available in M_0 then one of the existing pages have to be *replaced*
Online Paging Problem

- The page to be replaced is decided by a *page replacement* algorithm.

- The replacement problem is an online problem because
 - the inputs i.e. the requested pages are not known beforehand

- Typical (online) algorithms are:
 - FIFO
 - replace the page that arrived the earliest
 - LFU
 - replace the page that has been used the least (since its arrival)
 - LRU
 - replace the page that has not been used for the longest time
Paging Algorithms

- Typical performance parameters for paging algorithms include:
 - Time complexity
 - time taken to make a decision
 - Space complexity
 - space used for meta data that is required for making a decision
 - Miss rate
 - the number of times a request for a page is not found in M_0 (i.e. is missed and therefore has to be brought in from M_1)

- We will analyze miss rates of paging algorithms
Paging Algorithms - Miss Rates

- Given a sequence of page requests $\rho = \rho_0, \rho_1, \ldots, \rho_n$ denote
 - the worst case number of misses by a specific paging algorithm A as $f_A(\rho)$ and
 - the worst case number of misses by an optimal offline algorithm as $f_{OPT}(\rho)$

- The following is an optimal offline paging algorithm based on greedy choice
 - GreedyPaging:
 - Given an input sequence $\rho_0, \rho_1, \ldots, \rho_n$
 - On a miss replace the page whose next occurrence is farthest in the sequence
 - i.e. distance between the index of the current request and the index of occurrence of the page to be replaced is maximum
Paging Algorithm - Miss Rates

- **Assumptions:**
 - We will study the steady-state performance i.e. cold misses are not counted
 - Why is this a reasonable assumption?
 - We will assume that the size of M_1 is $k+1$ where $k \geq 2$ is the size of M_0
 - Why is this a reasonable assumption?

- **Greedy Paging Lemma:**
 - GreedyPaging is optimal and $f_{OPT}([\rho_0, \rho_1, ..., \rho_n]) = n / k$
 - Proof :
 - On a miss, the page to be replaced is the one that is farthest in the sequence (from the current request)
 - i.e. in the worst case at least k requests can be handled before a replacement is required;
 - so, one of every k requests will be a miss in the worst case.
Paging Algorithm - Miss Rates

- **Online Paging Lemma:**
 - For any deterministic online algorithm A there exist sequences of arbitrary length such that A misses on every request
 - i.e. $f_A([\rho_0, \rho_1, \ldots, \rho_n]) = n$
 - **Proof:**
 - Consider an adversary who chooses the next input ρ_j to be a page that is not one of the k pages in M_0
 - Since $|M_1| = k+1$, there always exists one such page.

- **Implication:**
 - Worst case analysis is not useful in comparing these algorithms
Paging Algorithm - Competitive Analysis

- Definition:
 - A deterministic online page replacement algorithm A is said to be C-competitive if there exists a constant b such that on every sequence of requests \(\rho = \rho_0, \rho_1, \ldots, \rho_n \):
 - \(f_A(\rho) - C \cdot f_{OPT}(\rho) \leq b \)
 - where the constant b must be independent of n but may depend on k.
 - The competitiveness coefficient of A, denoted \(C_A \), is the smallest C such that A is C-competitive.

- Online Paging Competitiveness Theorem:
 - For any deterministic online algorithm A for paging, \(C_A \geq k \)
 - Proof:
 - By GreedyPaging Lemma and Online Paging Lemma
Paging Algorithm - Competitive Analysis

Claim:
- $C_{LRU} = k$

Proof:
- Partition the input sequence into rounds $R_0, R_1 \ldots R_t$
 - such that each round R_j results in exactly k misses by LRU.

- In each round R_j, all the $k+1$ pages must have been accessed.
 - Why?

So, the ratio of misses by LRU to optimal misses is at most k i.e. for any input sequence ρ
- $f_{LRU}(\rho) / f_{OPT}(\rho) \leq k$
- i.e. $C_{LRU} \leq k$

But by OPC Theorem: $C_{LRU} \geq k$.
Paging Algorithm - Competitive Analysis

- **Claim:** \(C_{\text{FIFO}} = k \)
 - **Proof:** (similar to the proof for LRU: left as exercise)

- **Claim:** \(C_{\text{LFU}} > k \)
 - **Proof:**
 - Consider a sequence \(\rho \) where
 - \(\rho_0, \rho_1, \ldots, \rho_j \) are \(k-1 \) distinct pages with 2 accesses each and
 - \(\rho_{j+2^i-1}, \rho_{j+2^i} \) are a pair of different pages repeated for each \(i = 1, 2, \ldots \)
 - and are different from \(\rho_0, \rho_1, \ldots, \rho_j \)

 - \(f_{\text{LFU}}(\rho) = n - 2k + 1 \) and \(f_{\text{OPT}}(\rho) = 2 \)
 - Therefore the ratio \(f_{\text{LFU}}(\rho) / f_{\text{OPT}}(\rho) \) is \(O(n) \)
 - i.e. not bounded
Paging Algorithm - Competitive Analysis

- Online Paging Competitiveness Theorem:
 - For any deterministic online algorithm A for paging, $C_A \geq k$
 - Alternative Proof:
 - Imagine that the online algorithm A and the optimal algorithm O are managing separate caches with the same initial set of items for the same request sequence.
 - The first request is to an item not in either cache.
 - Both algorithms incur a miss.
 - Let $S = \{ \text{the new item} \} \cup \{ \text{all items initially in O’s cache} \}$
 - Every new request is for an item not in A’s cache.
 - A misses on every request.
 - Split the request sequence into rounds:
 - A round is a maximal sequence of requests in which at most k distinct items are requested.
 - i.e. in each round A misses at least k times but O misses exactly once (the first request in each round, which would have been O’s victim for the first request of the previous round).
Paging Algorithm - Competitive Analysis

- Online Paging Competitiveness Theorem:
 - For any deterministic online algorithm A for paging, $C_A \geq k$
 - Alternative Proof (contd.)
 - At the end of each round both A and O have the same set of items in their caches
 - i.e. there are arbitrarily long sequences on which A has k times as many misses as O

- Proof Technique:
 - We used only the fact that the online algorithm does not know future requests
 - We did not exploit any computational limitation of the online algorithm

- Thus the lower bound applies to any deterministic online algorithm regardless of space and time complexities
Paging Algorithm - Competitive Analysis

- Online Paging Competitiveness Theorem:
 - For any deterministic online algorithm A for paging, $C_A \geq k$

- Question:
 - Can the negative result in OPC Theorem be overcome using randomization?

- Proof Technique:
 - One can view the offline algorithm as an adversary who is not only managing a cache but is also choosing the inputs
 - and in this case an adversary who also knows the state of the algorithm (being analyzed).
 - In case of a randomized algorithm, if the adversary knows the state (in this case, current set of pages in the cache)
 - then the adversary knows the random choices made by the algorithm (in this case, the pages to be evicted)
Adversary Models

- There are different models for such an adversary
 - An oblivious adversary
 - is an adversary who does not know the random choices made by the algorithm
 - An adaptive adversary
 - is an adversary who gets to know the random choices made by the algorithm
 - and therefore gets to choose the next input based on the current choice

- An adaptive adversary may choose
 - to generate all the inputs and then execute its own algorithm (referred to as an adaptive offline adversary)
 OR
 - to execute its own algorithm as it generates its inputs (referred to as an adaptive online adversary)

- Question:
 - Why does this choice not matter for an oblivious adversary?
Competitiveness of Randomized Algorithms

- A randomized online paging algorithm R would make a possibly random choice of which of the k items in the cache it will evict:
 - Given a sequence ρ of requests the number of misses is now a random variable, say, $f_R(\rho)$
 - Then R is C-competitive against the oblivious adversary if for every sequence ρ of requests

 $$E[f_R(\rho)] - C \cdot f_{\text{OPT}}(\rho) \leq b$$

 for some constant b that is independent of the length of ρ
 - The *oblivious competitiveness coefficient* of R, denoted C_R^{obl}, is the smallest C such that R is C-competitive.

- We can define similar coefficients against adaptive adversaries.
Competitiveness of Randomized Algorithms

- Given a randomized online paging algorithm R and a sequence ρ of requests generated by an adaptive offline adversary
 - Let the number of misses by R be denoted by the random variable $f_R(\rho)$
 - Let the number of misses by the optimal offline algorithm be denoted by the random variable $f_{OPT}(R)$
 - Question: Why is this a random variable?
- Then R is C-competitive against the adaptive offline adversary if for every sequence ρ of requests
 - $E[f_R(\rho)] - C \times E[f_{OPT}(\rho)] \leq b$
 - for some constant b that is independent of the length of ρ
- The adaptive offline competitiveness coefficient of R, denoted C_R^{aof}, is the smallest C such that R is C-competitive.
Competitiveness of Randomized Algorithms

- Given a randomized online paging algorithm R and a sequence ρ of requests generated by an adaptive offline adversary
 - Let the number of misses by R be denoted by the random variable $f_R(\rho)$
 - Let the number of misses by the optimal online algorithm be denoted by the random variable $f_{OPTON}(R)$
 - Then R is C-competitive against the adaptive offline adversary if for every sequence ρ of requests
 - $E[f_R(\rho)] - C \ast E[f_{OPTON}(\rho)] \leq b$
 - for some constant b that is independent of the length of ρ
 - The adaptive offline competitiveness coefficient of R, denoted C_{R}^{aon}, is the smallest C such that R is C-competitive.
Competitiveness of Randomized Algorithms

- Clearly, by definition, for any randomized algorithm \(R \),
 \[C_R^{obl} \leq C_R^{aon} \leq C_R^{aof} \]

- Let \(C^{obl} \) denote the lowest oblivious competitive coefficient among all randomized algorithms
 \[i.e. \ C^{obl} = \min_R C^{obl} \]

- And similarly, let
 \[C^{aon} = \min_R C^{aon} \]
 \[C^{aof} = \min_R C^{aof} \]

- Also \(C^{det} \) denote the lowest competitive coefficient of any deterministic online paging algorithm:

- Then
 \[C^{obl} \leq C^{aon} \leq C^{aof} \leq C^{det} \]
Paging against an oblivious adversary

- Consider an online deterministic paging algorithm A
 - Let p be a probability distribution for choosing a request sequence
 - i.e. a distribution for choosing ρ_i (which may depend on $\rho_{i_1}, \rho_{i_2}, \ldots, \rho_{i-1}$)
 - Both A’s cost and the optimal cost are now random variables.
 - Define A’s \textit{competitiveness coefficient} under p, denoted C_A^p, to be the smallest C such that
 $$E[f_R(\rho)] - C \cdot E[f_{\text{OPT}}(\rho)] \leq b$$
 for some constant b that is independent of the length of ρ.

Paging against an oblivious adversary

- Also note that $C_{R^{obl}}$ can be interpreted as
 - $\max_{\rho} \{ \text{smallest } C \text{ such that } E[f_R(\rho)] - C \times f_{OPT}(\rho) \leq b \}$
 for some b that is independent of the length of ρ

- i.e. by Yao’s minimax principle:
 - $\min_R C_{R^{obl}} = \max_{\rho} \min_A C_A^\rho$
 - i.e. the competitiveness of the best randomized online paging algorithm
 - is the same as
 - the competitiveness of the best deterministic online algorithm for a worst-case distribution on request sequences

- i.e. for any distribution ρ
 - $\min_R C_{R^{obl}} \geq \min_A C_A^\rho$

- i.e. for any distribution ρ and any algorithm R
 - $C_{R^{obl}} \geq \min_A C_A^\rho$
Paging against an oblivious adversary

- **Theorem:**
 - Let R be a randomized online algorithm for paging. Then $C_R^{obl} \geq H_k$, where H_k is k^{th} Harmonic number.

- **Proof:**
 - We will use Yao’s minimax principle i.e.
 - we will choose a probability distribution and
 - find the best performance for it by a deterministic online algorithm
 - which will be the lower bound for the performance of any randomized online algorithm
 - Let $I = \{ I_1, I_2, ..., I_{k+1} \}$ be the set of possible pages to be requested.
 - We will construct a probability distribution ρ on request sequences ρ of length $N \geq k$
 - and prove that for ρ the best expected performance by a deterministic online algorithm is H_k.
Paging against an oblivious adversary

Proof (contd.):

- Construction of a distribution ρ on request sequences ρ:
 - the first request ρ_1 is chosen uniformly randomly from the items in I
 - for $i > 1$, request ρ_i is chosen uniformly randomly from the items in $I - \{\rho_{i-1}\}$

- Divide the sequence into rounds:
 - each round is made of a maximal subsequence containing requests of k distinct pages

- Claims:
 1. The expected length of such a round is k^*H_k
 2. For each round, the optimal offline algorithm would miss once.
 3. The expected number of misses per round by the best deterministic online algorithm, is H_k

- By Claims 2 and 3, $\min_{A} C_A^\rho = H_k$
Paging against an oblivious adversary

- **Claim 1:**
 - The expected length of a round is kH_k

- **Proof:**
 - Consider a complete graph G with $k+1$ vertices.
 - Assume that a person walking along (the edges of) G chooses any neighbor with equal probability (1/k in this case)
 - What is the expected number of steps before a person starting at a vertex ends up visiting every vertex at least once?
 - (Random Walks) Cover Time for a Complete Graph with n nodes is $n-1 H_{n-1}$
 - We will study Random Walks later.
Paging against an oblivious adversary

- **Claim 2:**
 - For each round, the optimal offline algorithm would miss once

- **Proof:**
 - Each round includes requests for k distinct pages.
 - So the greedy optimal algorithm would retain those k pages in cache.
 - The first request in each round would be an item not in cache
 - and hence the optimal algorithm would incur a miss on that.
Paging against an oblivious adversary

- **Claim 3:**
 - The expected number of misses per round by the best deterministic online algorithm, say A, is H_k

- **Proof:**
 - At any point in time, A must leave one of the $k+1$ items out of the cache.
 - Whenever a request falls on this item, A incurs a miss
 - In distribution p, every request is chosen uniformly randomly from the k items other than the last requested item
 - The probability that a request falls on the item left out by A is $1/k$.
 - The expected number of misses on a round of length kH_k is then H_k
The marker algorithm
- maintains a *marker bit* with each cache location
- and proceeds in a series of rounds.

For each round:
- At the beginning, all marker bits are set to 0.
- For each request:
 - if the item is in a cache location, then the corresponding marker is set to 1
 - if the item is a miss
 - choose an unmarked cache location, u, uniformly randomly
 - evict the item in u and set its marker to 1
 - bring the requested item into u
- If all locations are marked, the round ends.
Online Paging - Marker Algorithm

- Theorem: The Marker algorithm is $(2H_k)$-competitive.

- Proof:
 - (By comparing the Marker algorithm’s performance against the optimal offline algorithm on the same sequence of inputs)
 - The Marker algorithm implicitly divides the request sequence into rounds such that
 - there are exactly k distinct items in each round
 - Define an item to be
 - stale – if is unmarked (in this round) but was marked in the previous round
 - clean – if it is neither stale nor marked
 - Let L be the number of requests to clean items in a round.
Online Paging - Marker Algorithm

- Theorem: The Marker algorithm is \((2H_k)\)-competitive.

- Proof (continued):
 - Claims:
 - The amortized number of misses per round by the offline algorithm is at least \(L/2\)
 - The expected number of misses per round by the Marker algorithm is \(L*H_k\)
 - So, the competitive ratio is \(2*H_k\).
Paging against an oblivious adversary

- Compare the results of the previous two theorems i.e.
 - $C_R^{obl} \geq H_k$ for any randomized algorithm R and
 - $C_M^{obl} = 2*H_k$ for the Marker algorithm

- with that of the lower bound result for deterministic algorithms:
 - $C_A \geq k$ for any deterministic algorithm A

- How do you interpret the results?
Relating the Adversaries

- How do randomized online paging algorithms compete against adaptive adversaries?

- Theorem (without proof): \[\text{applicable for a general class of request-answer problems including paging}\]
 - If there is a randomized algorithm that is α-competitive against every adaptive offline adversary, then there exists an α-competitive deterministic algorithm.

- Implication (for paging):
 - There is no randomized online algorithm for paging with a competitiveness coefficient smaller than k.
Relating the Adversaries

- Theorem (without proof): [applicable for a general class of request-answer problems including paging]

 - If there is a randomized algorithm R that is α-competitive against every adaptive online adversary, and there is a β-competitive randomized algorithm against any oblivious adversary then R is $(\alpha \cdot \beta)$-competitive against any adaptive offline adversary.

- Implication (for paging): ??